

 Navigation

 	
 index

 	
 next |

 	django-facetools 0.2.0 documentation

Django Facetools Documentation

Introduction

Django Facetools provides a set of features to ease development of Facecbook
canvas apps in a Django project.

Features:

	Replacement url template tag as well as the reverse function that convert
an internal url into it’s facebook canvas equivalent
(ex: http://my_app.mycompany.com/canvas/my_view to https://apps.facebook.com/my_app/my_view)

	Ability to define facebook test users, their permissions, and their initial
friends per app. The management command sync_facebook_test_users lets you recreate
your test users in your facebook app with one call.

	FacebookTestCase can be used in place of Django’s TestCase. Just
specify a test user’s name, much like a fixture, and the test client will mock
Facebook requests to your canvas app, complete with a valid signed request for the
specified test user.

	New in version 0.2: FacebookTestCase can also have the test client’s signed request

set manually with the new set_client_signed_request method.
* Integration with other facebook django packages, supporting the following (with more to come):

	Fandjango (https://github.com/jgorset/fandjango)

Table of Contents

	Installing Django Facetools
	Install Dependencies

	Install Django Facetools

	Configure Django

	Writing your first Django app...for Facebook!
	Get the example app

	Setup the example app

	Add tests for the original views

	Convert the app into a Facebook canvas app

	Using Facetools to fix iframe problems

	Integrating and Testing Facebook Open Graph
	Force Facebook users to install app and grant permissions

	Adding Facebook open graph data to a template

	Testing Facebook open graph data

	Wrap Up

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Eric Palakovich Carr.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	0.2.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-facetools 0.2.0 documentation

Installing Django Facetools

Install Dependencies

Django Facetools has been tested on Python 2.6 and 2.7. It’s been ran
using the following packages:

	Django >= 1.3.1

	south >= 0.7.3

	requests >= 0.7.3

To install these dependencies, you can use pip:

$ pip install django
$ pip install south
$ pip install requests

Install Django Facetools

For the latest stable version (recommended), use pip or easy_install:

$ pip install django-facetools

Alternatively, you can also download the latest development version from
http://github.com/bigsassy/django-facetools and run the installation script:

$ python setup.py install

or use pip:

$ pip install -e git://github.com/bigsassy/django-facetools#egg=django-facetools

Configure Django

	In your project settings, add facetools to the INSTALLED_APPS:

INSTALLED_APPS = (
 # ... your other apps here
 'facetools',
)

	Also set the FACEBOOK_APPLICATION_ID, FACEBOOK_APPLICATION_SECRET_KEY,
FACEBOOK_CANVAS_URL. and FACEBOOK_CANVAS_PAGE settings:

FACEBOOK_APPLICATION_ID = '301572769893123'
FACEBOOK_APPLICATION_SECRET_KEY = '[insert your secret key]'
FACEBOOK_CANVAS_URL = 'https://myapp.mycompany.com/canvas/'
FACEBOOK_CANVAS_PAGE = 'http://apps.facebook.com/myapp'

 Copyright 2012, Eric Palakovich Carr.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	0.2.0

 Navigation

 	
 index

 	
 previous |

 	django-facetools 0.2.0 documentation

Writing your first Django app...for Facebook!

Converting existing Django apps to work as a Facebook app can be very simple.
We’re going to see how simple by converting the official Django tutorial app
to work on facebook. You can view the tutorial at:

https://docs.djangoproject.com/en/1.3/intro/tutorial01/

Here’s how we’re going to modify the poll app:

	Add tests for the original views

	Convert the app so it works as a Facebook canvas app

	Let users post their vote to their walls

	Let users invite their friends to vote in the poll

	Add more tests to cover the new features

We’ll be using django-facetools along with fandjango to make this happen.

Get the example app

Download the app and it’s dependencies

First things first. Clone this example app’s starting point from github:

$ git clone git://github.com/bigsassy/facetools-example-start.git
$ cd facetools-example-start

Optionally, you can create a virtualenv for this app:

$ virtualenv --no-site-packages virenv
$ source virenv/bin/activate

Next, you’ll want to install the requirements for facetools:

$ pip install -r requirements.txt

Now let’s create the database:

$ cd mysite
$ python manage.py syncdb

And finally, let’s start the development server:

$ python manage.py runserver

Setup the example app

Add some data to the application

Let’s create some test data.

	Go to http://localhost:8000/admin/

	Click the +Add button for Polls

	Set the question to What’s up?

	Click the Show link next to Date Information. Click the Today and Now link for Date published.

	Enter the choices Not much, and The sky. Set each choice’s Votes field to 0.

	Click Save and add another

	Repeat, but set the question to What’s going down?, with the choices Not much, and My cholesterol, once again with 0 votes each.

	Click the Save button.

Add names to our urls

To keep things DRY, we’re going to add names to all of our urls. Change polls/urls.py
to look like the following:

from django.conf.urls.defaults import patterns, include, url
from django.views.generic import DetailView, ListView
from polls.models import Poll

urlpatterns = patterns('',
 url(r'^$',
 ListView.as_view(
 queryset=Poll.objects.order_by('-pub_date')[:5],
 context_object_name='latest_poll_list',
 template_name='polls/index.html'
), name='poll_index'),
 url(r'^(?P<pk>\d+)/$',
 DetailView.as_view(
 model=Poll,
 template_name='polls/detail.html'
), name='poll_detail'),
 url(r'^(?P<pk>\d+)/results/$',
 DetailView.as_view(
 model=Poll,
 template_name='polls/results.html'
), name='poll_results'),
 url(r'^(?P<poll_id>\d+)/vote/$', 'polls.views.vote', name="poll_vote"),
)

Now we can use the reverse function and url template tag to get a url without
hardcoding paths. Let’s update our templates now, replacing the lines with hardcocded
urls with the following:

In index.html
{{ poll.question }}

In results.html
Vote again?

In detail.html
<form action="{% url poll_vote poll_id=poll.id %}" method="post">

Manually test the application

Ok, let’s run the app through it’s paces. It’s a simple polling app where
you can view a list of polls, vote in any of the polls, and view the results
of the poll.

Check the list page first by going to http://localhost:8000/polls/. You
should see a bulleted list with a two polls, called What’s up? and What’s going down?.

Click on the What’s up? poll to see its detail page. We should see the
poll’s title again, two radio buttons with the options Not much and The sky,
and finally a vote button. Chooese The sky and click vote.

This should take you to a result page, once again showing the poll’s title,
followed by a bulleted list of the two choices Not much and The sky with their votes,
and a link to vote again.

Add tests for the original views

So with everything working, we’re going to write some tests using Django’s test client
for everything we just manually did. We’ll be revisiting these tests when
we use facetools to inject facebook test users into the Django test client.

Fist, let’s create a data fixture to run out tests against. Stop the runserver command
and run the following:

$ python manage.py dumpdata polls --indent=4 > polls/fixtures/polls.json

Open the new file, polls/fixtures/polls.json, change the number of votes for poll choice
“The sky” from 1 to 0, and save it. Now we have a nice set of test data.

Now open polls/tests.py and make make it look like this:

from django.core.urlresolvers import reverse
from django.test import TestCase

from polls.models import Poll

class ServerSideTests(TestCase):
 fixtures = ['polls.json']

 def test_index(self):
 pass

 def test_detail(self):
 pass

 def test_voting(self):
 pass

 def test_results(self):
 pass

We’re going to write some tests to ensure the website is functioning
correctly on the server. Let’s get some of the simple ones out of
the way, only checking for templates and valid context variables:

def test_index(self):
 # The view should return a valid page with the correct template
 response = self.client.get(reverse("poll_index"))
 self.assertEquals(200, response.status_code)
 self.assertTemplateUsed(response, "polls/index.html")
 self.assertIn('latest_poll_list', response.context)

 # The template should get all the polls in the database
 expected_polls = [p.pk for p in response.context['latest_poll_list']]
 actual_polls = [p.pk for p in Poll.objects.all()]
 self.assertEquals(set(expected_polls), set(actual_polls))

def test_detail(self):
 expected_poll = Poll.objects.get(pk=1)

 # The view should return a valid page with the correct template
 response = self.client.get(reverse("poll_detail", args=[expected_poll.pk]))
 self.assertEquals(200, response.status_code)
 self.assertTemplateUsed(response, "polls/detail.html")
 self.assertIn('poll', response.context)

 # The poll should be the correct poll
 actual_poll = response.context['poll']
 self.assertEquals(expected_poll.pk, actual_poll.pk)

def test_results(self):
 expected_poll = Poll.objects.get(pk=1)

 # The view should return a valid page with the correct template
 response = self.client.get(reverse("poll_detail", args=[expected_poll.pk]))
 self.assertEquals(200, response.status_code)
 self.assertTemplateUsed(response, "polls/detail.html")
 self.assertIn('poll', response.context)

 # The poll should be the correct poll
 actual_poll = response.context['poll']
 self.assertEquals(expected_poll.pk, actual_poll.pk)

Next we’ll write a test to put the voting feature through its paces:

def test_voting(self):
 poll = Poll.objects.get(pk=1)

 # Test initial data assumptions
 self.assertEquals(0, poll.choice_set.get(pk=1).votes)
 self.assertEquals(0, poll.choice_set.get(pk=2).votes)

 # Test voting a bunch of times
 self.vote_and_assert(poll, 1, {1: 1, 2: 0})
 self.vote_and_assert(poll, 1, {1: 2, 2: 0})
 self.vote_and_assert(poll, 2, {1: 2, 2: 1})
 self.vote_and_assert(poll, 1, {1: 3, 2: 1})
 self.vote_and_assert(poll, 2, {1: 3, 2: 2})

def vote_and_assert(self, poll, choice_pk, expected_choice_votes):
 response = self.client.post(reverse("poll_vote",
 kwargs={'poll_id': poll.pk}),
 {
 'poll_id': poll.pk,
 'choice': choice_pk
 }
)

 # Make sure after voting the user is redirected to the results page
 expected_redirect_url = reverse("poll_results", args=[poll.pk])
 self.assertEquals(302, response.status_code)
 self.assertTrue(response['Location'].endswith(expected_redirect_url))

 # Make sure that the votes in the database reflect the new vote
 for choice_pk,expected_votes in expected_choice_votes.items():
 choice = poll.choice_set.get(pk=choice_pk)
 self.assertEquals(expected_votes, choice.votes)

Time to make sure our tests are working. Assuming your still in the
mysite directory on the command line, do the following:

$ python manage.py test polls

And with that we have pretty good coverage of our views (front-end
is another story). Now, let’s get to the fun stuff.

Convert the app into a Facebook canvas app

Create the facebook app

With that, it’s time to start using Facebook. So let’s transform
this Django app into a Facebook app.

Before we do anything, you should familiarize yourself with Facebook
canvas apps: http://developers.facebook.com/docs/guides/canvas/.

Next, go the the tutorial at http://developers.facebook.com/docs/appsonfacebook/tutorial/
and complete the sections Creating your App and Configuring your App, using the
following values for your app settings:

	App Display Name: Whatever you want

	App name space: Whatever you want

	Contact e-mail: Your e-mail address

	App Domain: Leave this blank for this tutorial

	Category: Leave it on Other

In the Select how your app integrates with Facebook section, click the checkmark
next to App on Facebook. Next enter https://localhost:8000/canvas/ for the Canvas
URL. Leave the secure canvas canvas url blank, as we’ll be running this site as a development
site.

Next, click the Save changes button to create your app! You’ll get a warning saying
Secure Canvas URL will be required. To fix this requirement, we’re going to turn on sandbox mode.
Sandbox mode makes the application invisible to facebook users not explicitly added to the app.

To setup sandbox mode, click on Advanced under Settings in the left navigation, click the
Enabled radio for Sandbox Mode, and click the Save changes button at the bottom of the page.

Seperate your canvas app from the admin

Next, we want to make sure the admin section of our site isn’t availalble
from the facebook app. We’re going to modify the root urls.py in the mysite
directory so the polls app is reached from /canvas/
(e.g. http:localhost:8000/canvas/polls/poll/1/)/ We’re going to change
one line from this:

url(r'^polls/', include('polls.urls')),

To this:

url(r'^canvas/polls/', include('polls.urls')),

Now, let’s run out tests to make sure everything is still working. Close
the runserver command if it’s still running and do the following:

$ python manage.py test polls

Sure enough, all out tests still pass even after changing our url
structure. This is because we used the reverse function in our
tests to get each view’s url by name, instead of hardcoding them.
That’s how we keep things DRY in Django.

Try out your Facebook app!

Ok, go to your app url. First, bring your server back up:

$ python manage.py runserver

Then open polls via your facebook canvas app in your browser. The url will be
something like https://apps.facebook.com/your-app-namespace/polls/. You
should be greeted with a CSRF token error page. This happens because facebook
sends a POST to our app with the signed request you read about earlier in the
facebook docs.

This causes Django to complain because we have the CsrfViewMiddleware installed,
which looks for a CSRF token in any post request to prevent cross-site request forgery
attacks. Time to bring out Fandjango.

Installing and configuring Fandjango

Assuming you installed the requirments file, Fandjango should already available in your virtualenv.

Setting up Fandjango is easy. In settings.py:

	Add fandjango to your INSTALLED_APPS

2. Add fandjango.middleware.FacebookMiddleware to your MIDDLEWARE_CLASSES, before the CSRF middleware.
MIDDLEWARE_CLASSES should end up looking like this:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'fandjango.middleware.FacebookMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
)

	Add the following settings at the bottom of the file. You can find your values at https://developers.facebook.com/apps/:

FACEBOOK_APPLICATION_ID = "Your App ID / API Key here"
FACEBOOK_APPLICATION_SECRET_KEY = "Your App Secret here"
FACEBOOK_APPLICATION_NAMESPACE = "your-app-namespace"

	Finally, run syncdb again to add the Fandjango tables:

$ python manage.py syncdb

Let’s bring your server back up:

$ python manage.py runserver

And let’s visit your page again. You should see the poll page in all it’s glory.
Now visit http://localhost:8000/admin. Your admin page is also available and
seperate from the facebook page.

Using Facetools to fix iframe problems

Ok, so now we have our Django app running as a Facebook canvas app. But there are a few
problems that persist.

	The links for each poll read like http://localhost:8000/canvas/polls/1 instead of https://apps.facebook.com/facetools-example/polls/1.

	When you click on a poll it goes to the page, but the browsers address bar doesn’t update.

	When you vote in the poll you get an error, yet the admin shows the vote is getting counted. This is because the vote gets handled in our polls.views.vote view, but then fails when the view tries to redirect in an iframe.

We’re going to solve all these problems using Facetools. Do the following:

	Add ‘facetools’ to your INSTALLED_APPS in the settings.py file.

	Add the following settings at the bottom of the file. You can find your values at https://developers.facebook.com/apps/:

existing settings you've already entered, and are required by facetools
FACEBOOK_APPLICATION_ID = "Your App ID / API Key here"
FACEBOOK_APPLICATION_SECRET_KEY = "Your App Secret here"

New settings you're adding now
FACEBOOK_CANVAS_PAGE = "Your canvas page here"
FACEBOOK_CANVAS_URL = "The value from Secure Canvas URL here"

	Add {% load facetools_tags %} to the top of all three template *.html files.

	Rename url to facebook_url Add a target of _top to each anchor tag in our templates:

In index.html
{{ poll.question }}

In results.html
Vote again?

5. Change the vote view in polls/views.py so HttpResponseRedirect is now
facebook_redirect, and that is imported from facetools.url.
It should look like this:

... other imports ...
from facetools.url import facebook_redirect

def vote(request, poll_id):
 p = get_object_or_404(Poll, pk=poll_id)
 try:
 selected_choice = p.choice_set.get(pk=request.POST['choice'])
 except (KeyError, Choice.DoesNotExist):
 # Redisplay the poll voting form.
 return render_to_response('polls/detail.html', {
 'poll': p,
 'error_message': "You didn't select a choice.",
 }, context_instance=RequestContext(request))
 else:
 selected_choice.votes += 1
 selected_choice.save()
 return facebook_redirect(reverse('poll_results', args=(p.id,)))

Save your changes, do runserver again if it’s not running, and go to the index page again
in your browser. Now the url for each poll points to the the page in facebook. And when you
submit your vote in a poll, you’ll get redirected to the results page.

How did Facetools help?

The facebook_url tags automatically translate any url path that falls in
the FACEBOOK_CANVAS_URL and translates it to it’s facebook equivalent.

The facebook_redirect function applies the same logic, acting as a substitute for
HttpResponseRedirect and django.urlresolvers.reverse. It replaces the redirect resonse
object with a regular html result. The html consists of a redirect via javascript. It’ll
look something like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <script type="text/javascript">
 top.location.href="https://apps.facebook.com/your-app-namespace/polls/1/results/";
 </script>
</head>
<body>

</body>
</html>

Check out tests

Once last thing, we should check that our tests still pass. Go back to the
mysite directory on the command line and run your tests:

$ python manage.py test polls

You should get one AssertionError stating 302 != 200. This is where we used
to check that POSTing a vote would result in a http status code for redirects.
Since we’re now forced to use javascript to redirect the client, we’re getting
a regular 200 status code instead.

Update the second code block in the vote_and_assert method of the ServerSideTests
class in the polls/tests.py file from this:

Make sure after voting the user is redirected to the results page
expected_redirect_url = reverse("poll_results", args=[poll.pk])
self.assertEquals(302, response.status_code)
self.assertIn(expected_redirect_url, response.content)

to this:

Make sure after voting the user is redirected to the results page
expected_redirect_url = facebook_reverse("poll_results", args=[poll.pk])
self.assertEquals(200, response.status_code)
self.assertIn(expected_redirect_url, response.content)

and add the following import to polls/tests.py:

from facetools.url import facebook_reverse

Now when you run the tests again they all should pass.

Integrating and Testing Facebook Open Graph

Force Facebook users to install app and grant permissions

Now let’s add a feature that actually leverages Facebook’s Open Graph.
We’re going to add a welcome message to the poll index page. To get access
to the user’s name, we’ll need Facebook users to install the app
and grant permissions to us.

To do this with Fandjango is easy. We need to add a decorator on
each of our view functions. We can also add permissions our app requires
in our settings.py.

First, add this with the other Facebook settings in the settings.py file:

FACEBOOK_APPLICATION_INITIAL_PERMISSIONS = [
 'read_stream',
 'user_birthday',
]

This will make Fandjango ask users their permission to read from their
stream and get their birthday (a.k.a. their age). Next we add the
decorator to each view function. Change polls/views.py like so:

... other imports ...
from fandjango.decorators import facebook_authorization_required

@facebook_authorization_required
def vote(request, poll_id):
 # ... the function body ...

And change polls/urls.py to look like this:

... other imports ...
from fandjango.decorators import facebook_authorization_required

urlpatterns = patterns('',
 url(r'^$',
 facebook_authorization_required(
 ListView.as_view(
 queryset=Poll.objects.order_by('-pub_date')[:5],
 context_object_name='latest_poll_list',
 template_name='polls/index.html')
), name='poll_index'),
 url(r'^(?P<pk>\d+)/$',
 facebook_authorization_required(
 DetailView.as_view(
 model=Poll,
 template_name='polls/detail.html')
), name='poll_detail'),
 url(r'^(?P<pk>\d+)/results/$',
 facebook_authorization_required(
 DetailView.as_view(
 model=Poll,
 template_name='polls/results.html')
), name='poll_results'),
 url(r'^(?P<poll_id>\d+)/vote/$', 'polls.views.vote', name="poll_vote"),
)

Now each view has the facebook_authorization_required decorator, which
will look for a signed request either in POST data or in the user’s cookies.
If it’s missing, it’ll redirect the user to an authorization page to install
your app and grant it the permissions you specify.

Finally, Facetools requires you add facetools.middleware.FandjangoIntegrationMiddleware to
MIDDLEWARE_CLASSES, which should look this this when you’re done:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'fandjango.middleware.FacebookMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'facetools.middleware.FandjangoIntegrationMiddleware',
)

Adding Facebook open graph data to a template

Change the
template under polls/templates/polls/index.html so it looks like this:

{% load facetools_tags %}

<h1>Hello, {{ request.facebook.user.full_name }}!</h1>

{% if latest_poll_list %}

 {% for poll in latest_poll_list %}
 {{ poll.question }}
 {% endfor %}

{% else %}
<p>No polls are available.</p>
{% endif %}

And we’ll need to add a template context processor so we can access the
request object in our templates. Add this to the bottom of your settings.py file:

TEMPLATE_CONTEXT_PROCESSORS = (
 "django.contrib.auth.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n",
 "django.core.context_processors.media",
 "django.core.context_processors.static",
 "django.contrib.messages.context_processors.messages",
 "django.core.context_processors.request",
)

Now when you go to the index page, you should be greeted by name.
Fandjango attaches the facebook object to every request. Assuming
a valid signed request was found, the facebook object will have a
two member variables, signed_request and user.

The signed_request variable is a dict with the signed request data.
The user variable is a Fandjango User instance, containing useful
data, like user.full_name, user.gender, and user.email, along with
a property called graph. The graph property is an instance of
Facepy.GraphAPI, which gives you an API for this user’s open graph data.

Testing Facebook open graph data

Facebook provides a mechanism for defining test users for an app
without creating fake accounts in facebook. You can read up about
it here: http://developers.facebook.com/docs/test_users/

Facetools provides a means of managing your test users so that they
can be created and used automatically in your tests across one or
environments (development vs staging).

We’re going to update our tests to ensure the open graph data is
working correctly on our site, with a little help from Facetools

Setup Facebook Test Users in Facetools

First we’ll deine our facebook test user. Create the file
polls/facebook_test_users.py with the following content:

facebook_test_users = [
 {
 'name': 'Sam Samson',
 'installed': True,
 'permissions': [
 'read_stream',
 'user_birthday',
]
 }
]

This is how we define test users in Facetools. Each Django app can
provide its own set of users in a facebook_test_users.py file. The
file either needs to define a list named facebook_test_users, consisting
of dicts following the above format, or a callable of the same name
that also returns a list of those dicts.

What’s nice is that we defined this test user once, and now we can
recreate him anywhere with a management command we’ll see in a bit.
This is particularly nice if you have a facebook app for each of
your environemnts (e.g. myfacebookapp-dev, myfacebookapp-staging).

Next, we’ll create the test user on facebook using the sync_facebook_test_users
management command. From the command line in the mysite directory, run:

$ python manage.py sync_facebook_test_users polls

Once this finishes running, you’ll have a test user defined on facebook,
and a test fixture with the TestUser data at
polls/fixtures/facetools_test_users.json. This test fixture is
created or re-created everytime the command is run, which is particularly
useful for updating the fixture’s access token when they go stale.

Extra - We won’t use this for the tutorial, but you can also define a test
users friends among other test users. It works like this:

facebook_test_users = [
 {
 'name': 'Sam Samson',
 'installed': True,
 'permissions': [
 'read_stream',
 'user_birthday',
]
 },
 {
 'name': 'Laura Ensminger',
 'installed': True,
 'permissions': [
 'read_stream',
 'user_birthday',
],
 'friends': ['Sam Samson']
 }
]

If you ran sync_facebook_test_users now, you would get two test users that are
friends with each other on Facebook.

Update unit tests to test graph data

We’re going to update our test for index now. Update polls/tests.py
so it look like this:

... other imports ...#
from facetools.test import FacebookTestCase

class ServerSideTests(FacebookTestCase):
 fixtures = ['polls.json']
 facebook_test_user = "Sam Samson"

 def test_index(self):
 # The view should return a valid page with the correct template
 response = self.client.get(reverse("poll_index"))
 self.assertEquals(200, response.status_code)
 self.assertTemplateUsed(response, "polls/index.html")
 self.assertIn('latest_poll_list', response.context)

 # The template should get all the polls in the database
 expected_polls = [p.pk for p in response.context['latest_poll_list']]
 actual_polls = [p.pk for p in Poll.objects.all()]
 self.assertEquals(set(expected_polls), se`t(actual_polls))

 # The response content should have our teset user's name
 assertIn(self.test_user.name, response.content)

 # ... rest of file ...#

We’ve done a few things here. First, we’ve imported a FacebookTestCase,
and then changed the parent class of ServerSideTests from TestCase to
FacebookTestCase. Using this class will make the Django test client mock
a request as if made from the facebook canvas page, giving you access to a
signed request of the specified test user, in this case “Sam Samson”.
It’ll also supply us with self.test_user, the TestUser object of “Sam Samson”.

Integrate Fandjango into the tests

Next we’ll need to hook into Facetools’ signals. One is for
syncing any of your user data models with the up-to-date (thanks to sync_facebook_test_users)
test user data (in particular their access tokens). THe second is to update
the test client to include the signed request, e.g. via a cookie.

If you are using Fandjango then we can use functions provided by Facetools.
Add the following code at the top of polls/models.py:

... other imports ...#

from facetools.signals import sync_facebook_test_user, setup_facebook_test_client
from facetools.integrations import fandjango
sync_facebook_test_user.connect(fandjango.sync_facebook_test_user)
setup_facebook_test_client(fandjango.setup_facebook_test_client)

... rest of file ...#

With this, we’ll have a Fandjango User record created for our test user before each test is ran,
complete with the proper acesss token. And we’ll also have a signed request for the test user
added to a cookie that Fandjango sets when a user logins on the real Facebook canvas site.

Now if you go ahead and run the tests again everything should pass.

Manually manage Facebook Test Users in test cases

New in 0.2

Currently, our ServerSideTests test case should look like this:

	class ServerSideTests(FacebookTestCase):

	fixtures = [‘polls.json’]
facebook_test_user = “Sam Samson”

... rest of test case ...#

In 0.2 you can now manually set the signed request for a FacebookTestCase test client,
instead of using a facebook_test_users.py file, the facebook_test_user attribute, and
the sync_facebook_test_users management command. Instead you can use the new
set_client_signed_request method to set the test client’s signed request.

The set_client_signed_request accepts a facebook user ID and an access token. This will
cause the setup_facebook_test_client For example, you could modify the ServerSideTests
test case to look like this:

class ServerSideTests(FacebookTestCase):

	def setUp(self):

	facebook_id, oauth_token = your_function_for_getting_a_users_facebook_id_and_oauth_token()
self.set_client_signed_request(facebook_id, oauth_token)

... rest of test case ...#

This way you can manage creation and deletion of test users manually. This also works well if you don’t
need to automatically sync your test fixture data with real and currently active test user facebook ids
and access tokens. This makes sense if your test coverage doesn’t touch any open graph calls, or
if you use a library to mock away open graph calls.

Wrap Up

And that’s how you use Facetools and Fandjango together. Here are the key takeaways:

	Facetools will let you translate URLs for Facebook canvas pages with little effort

	Facetools makes it easy to create and keep Facebook test users in sync across multiple
facebook apps (e.g. apps.facebook.com/myapp-dev, apps.facebook.com/myapp-staging)

	Facetools give you a test client that mocks Facebook’s communication with your canvas app.

	Facetools provides a signal to sync your internal User models with your app’s Facebook test users

	Facetools also provides a signal to view, modify, and use the signed request before each
of your tests.

	And finally, Facetools comes with an integration package to work hand-in-hand

with Fandjango. Support for more Facebook packages coming soon.

 Copyright 2012, Eric Palakovich Carr.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	0.2.0

 Navigation

 	
 index

 	django-facetools 0.2.0 documentation

Index

 Copyright 2012, Eric Palakovich Carr.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	0.2.0

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-facetools 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Eric Palakovich Carr.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		0.2.0

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

