
django-facetools Documentation
Release 0.2.0

Eric Palakovich Carr

April 04, 2013

CONTENTS

1 Introduction 1

2 Table of Contents 3
2.1 Installing Django Facetools . 3
2.2 Writing your first Django app...for Facebook! . 4
2.3 Integrating and Testing Facebook Open Graph . 12

3 Indices and tables 17

i

ii

CHAPTER

ONE

INTRODUCTION

Django Facetools provides a set of features to ease development of Facecbook canvas apps in a Django project.

Features:

• Replacement url template tag as well as the reverse function that convert an internal
url into it’s facebook canvas equivalent (ex: http://my_app.mycompany.com/canvas/my_view to
https://apps.facebook.com/my_app/my_view)

• Ability to define facebook test users, their permissions, and their initial friends per app. The management
command sync_facebook_test_users lets you recreate your test users in your facebook app with one
call.

• FacebookTestCase can be used in place of Django’s TestCase. Just specify a test user’s name, much
like a fixture, and the test client will mock Facebook requests to your canvas app, complete with a valid signed
request for the specified test user.

• New in version 0.2: FacebookTestCase can also have the test client’s signed request

set manually with the new set_client_signed_request method. * Integration with other facebook django
packages, supporting the following (with more to come):

• Fandjango (https://github.com/jgorset/fandjango)

1

http://my_app.mycompany.com/canvas/my_view
https://apps.facebook.com/my_app/my_view
https://github.com/jgorset/fandjango

django-facetools Documentation, Release 0.2.0

2 Chapter 1. Introduction

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Installing Django Facetools

2.1.1 Install Dependencies

Django Facetools has been tested on Python 2.6 and 2.7. It’s been ran using the following packages:

• Django >= 1.3.1

• south >= 0.7.3

• requests >= 0.7.3

To install these dependencies, you can use pip:

$ pip install django
$ pip install south
$ pip install requests

2.1.2 Install Django Facetools

For the latest stable version (recommended), use pip or easy_install:

$ pip install django-facetools

Alternatively, you can also download the latest development version from http://github.com/bigsassy/django-facetools
and run the installation script:

$ python setup.py install

or use pip:

$ pip install -e git://github.com/bigsassy/django-facetools#egg=django-facetools

2.1.3 Configure Django

• In your project settings, add facetools to the INSTALLED_APPS:

INSTALLED_APPS = (
... your other apps here
’facetools’,

)

3

http://github.com/bigsassy/django-facetools

django-facetools Documentation, Release 0.2.0

• Also set the FACEBOOK_APPLICATION_ID, FACEBOOK_APPLICATION_SECRET_KEY,
FACEBOOK_CANVAS_URL. and FACEBOOK_CANVAS_PAGE settings:

FACEBOOK_APPLICATION_ID = ’301572769893123’
FACEBOOK_APPLICATION_SECRET_KEY = ’[insert your secret key]’
FACEBOOK_CANVAS_URL = ’https://myapp.mycompany.com/canvas/’
FACEBOOK_CANVAS_PAGE = ’http://apps.facebook.com/myapp’

2.2 Writing your first Django app...for Facebook!

Converting existing Django apps to work as a Facebook app can be very simple. We’re going to see how simple by
converting the official Django tutorial app to work on facebook. You can view the tutorial at:

https://docs.djangoproject.com/en/1.3/intro/tutorial01/

Here’s how we’re going to modify the poll app:

• Add tests for the original views

• Convert the app so it works as a Facebook canvas app

• Let users post their vote to their walls

• Let users invite their friends to vote in the poll

• Add more tests to cover the new features

We’ll be using django-facetools along with fandjango to make this happen.

2.2.1 Get the example app

Download the app and it’s dependencies

First things first. Clone this example app’s starting point from github:

$ git clone git://github.com/bigsassy/facetools-example-start.git
$ cd facetools-example-start

Optionally, you can create a virtualenv for this app:

$ virtualenv --no-site-packages virenv
$ source virenv/bin/activate

Next, you’ll want to install the requirements for facetools:

$ pip install -r requirements.txt

Now let’s create the database:

$ cd mysite
$ python manage.py syncdb

And finally, let’s start the development server:

$ python manage.py runserver

4 Chapter 2. Table of Contents

https://docs.djangoproject.com/en/1.3/intro/tutorial01/

django-facetools Documentation, Release 0.2.0

2.2.2 Setup the example app

Add some data to the application

Let’s create some test data.

1. Go to http://localhost:8000/admin/

2. Click the +Add button for Polls

3. Set the question to What’s up?

4. Click the Show link next to Date Information. Click the Today and Now link for Date published.

5. Enter the choices Not much, and The sky. Set each choice’s Votes field to 0.

6. Click Save and add another

7. Repeat, but set the question to What’s going down?, with the choices Not much, and My cholesterol, once again
with 0 votes each.

8. Click the Save button.

Add names to our urls

To keep things DRY, we’re going to add names to all of our urls. Change polls/urls.py to look like the following:

from django.conf.urls.defaults import patterns, include, url
from django.views.generic import DetailView, ListView
from polls.models import Poll

urlpatterns = patterns(’’,
url(r’^$’,

ListView.as_view(
queryset=Poll.objects.order_by(’-pub_date’)[:5],
context_object_name=’latest_poll_list’,
template_name=’polls/index.html’

), name=’poll_index’),
url(r’^(?P<pk>\d+)/$’,

DetailView.as_view(
model=Poll,
template_name=’polls/detail.html’

), name=’poll_detail’),
url(r’^(?P<pk>\d+)/results/$’,

DetailView.as_view(
model=Poll,
template_name=’polls/results.html’

), name=’poll_results’),
url(r’^(?P<poll_id>\d+)/vote/$’, ’polls.views.vote’, name="poll_vote"),

)

Now we can use the reverse function and url template tag to get a url without hardcoding paths. Let’s update our
templates now, replacing the lines with hardcocded urls with the following:

In index.html
{{ poll.question }}

In results.html
Vote again?

2.2. Writing your first Django app...for Facebook! 5

http://localhost:8000/admin/

django-facetools Documentation, Release 0.2.0

In detail.html
<form action="{% url poll_vote poll_id=poll.id %}" method="post">

Manually test the application

Ok, let’s run the app through it’s paces. It’s a simple polling app where you can view a list of polls, vote in any of the
polls, and view the results of the poll.

Check the list page first by going to http://localhost:8000/polls/. You should see a bulleted list with a two polls, called
What’s up? and What’s going down?.

Click on the What’s up? poll to see its detail page. We should see the poll’s title again, two radio buttons with the
options Not much and The sky, and finally a vote button. Chooese The sky and click vote.

This should take you to a result page, once again showing the poll’s title, followed by a bulleted list of the two choices
Not much and The sky with their votes, and a link to vote again.

2.2.3 Add tests for the original views

So with everything working, we’re going to write some tests using Django’s test client for everything we just manually
did. We’ll be revisiting these tests when we use facetools to inject facebook test users into the Django test client.

Fist, let’s create a data fixture to run out tests against. Stop the runserver command and run the following:

$ python manage.py dumpdata polls --indent=4 > polls/fixtures/polls.json

Open the new file, polls/fixtures/polls.json, change the number of votes for poll choice “The sky” from 1 to 0, and save
it. Now we have a nice set of test data.

Now open polls/tests.py and make make it look like this:

from django.core.urlresolvers import reverse
from django.test import TestCase

from polls.models import Poll

class ServerSideTests(TestCase):
fixtures = [’polls.json’]

def test_index(self):
pass

def test_detail(self):
pass

def test_voting(self):
pass

def test_results(self):
pass

We’re going to write some tests to ensure the website is functioning correctly on the server. Let’s get some of the
simple ones out of the way, only checking for templates and valid context variables:

def test_index(self):
The view should return a valid page with the correct template
response = self.client.get(reverse("poll_index"))

6 Chapter 2. Table of Contents

http://localhost:8000/polls/

django-facetools Documentation, Release 0.2.0

self.assertEquals(200, response.status_code)
self.assertTemplateUsed(response, "polls/index.html")
self.assertIn(’latest_poll_list’, response.context)

The template should get all the polls in the database
expected_polls = [p.pk for p in response.context[’latest_poll_list’]]
actual_polls = [p.pk for p in Poll.objects.all()]
self.assertEquals(set(expected_polls), set(actual_polls))

def test_detail(self):
expected_poll = Poll.objects.get(pk=1)

The view should return a valid page with the correct template
response = self.client.get(reverse("poll_detail", args=[expected_poll.pk]))
self.assertEquals(200, response.status_code)
self.assertTemplateUsed(response, "polls/detail.html")
self.assertIn(’poll’, response.context)

The poll should be the correct poll
actual_poll = response.context[’poll’]
self.assertEquals(expected_poll.pk, actual_poll.pk)

def test_results(self):
expected_poll = Poll.objects.get(pk=1)

The view should return a valid page with the correct template
response = self.client.get(reverse("poll_detail", args=[expected_poll.pk]))
self.assertEquals(200, response.status_code)
self.assertTemplateUsed(response, "polls/detail.html")
self.assertIn(’poll’, response.context)

The poll should be the correct poll
actual_poll = response.context[’poll’]
self.assertEquals(expected_poll.pk, actual_poll.pk)

Next we’ll write a test to put the voting feature through its paces:

def test_voting(self):
poll = Poll.objects.get(pk=1)

Test initial data assumptions
self.assertEquals(0, poll.choice_set.get(pk=1).votes)
self.assertEquals(0, poll.choice_set.get(pk=2).votes)

Test voting a bunch of times
self.vote_and_assert(poll, 1, {1: 1, 2: 0})
self.vote_and_assert(poll, 1, {1: 2, 2: 0})
self.vote_and_assert(poll, 2, {1: 2, 2: 1})
self.vote_and_assert(poll, 1, {1: 3, 2: 1})
self.vote_and_assert(poll, 2, {1: 3, 2: 2})

def vote_and_assert(self, poll, choice_pk, expected_choice_votes):
response = self.client.post(reverse("poll_vote",

kwargs={’poll_id’: poll.pk}),
{

’poll_id’: poll.pk,
’choice’: choice_pk

}

2.2. Writing your first Django app...for Facebook! 7

django-facetools Documentation, Release 0.2.0

)

Make sure after voting the user is redirected to the results page
expected_redirect_url = reverse("poll_results", args=[poll.pk])
self.assertEquals(302, response.status_code)
self.assertTrue(response[’Location’].endswith(expected_redirect_url))

Make sure that the votes in the database reflect the new vote
for choice_pk,expected_votes in expected_choice_votes.items():

choice = poll.choice_set.get(pk=choice_pk)
self.assertEquals(expected_votes, choice.votes)

Time to make sure our tests are working. Assuming your still in the mysite directory on the command line, do the
following:

$ python manage.py test polls

And with that we have pretty good coverage of our views (front-end is another story). Now, let’s get to the fun stuff.

2.2.4 Convert the app into a Facebook canvas app

Create the facebook app

With that, it’s time to start using Facebook. So let’s transform this Django app into a Facebook app.

Before we do anything, you should familiarize yourself with Facebook canvas apps:
http://developers.facebook.com/docs/guides/canvas/.

Next, go the the tutorial at http://developers.facebook.com/docs/appsonfacebook/tutorial/ and complete the sections
Creating your App and Configuring your App, using the following values for your app settings:

• App Display Name: Whatever you want

• App name space: Whatever you want

• Contact e-mail: Your e-mail address

• App Domain: Leave this blank for this tutorial

• Category: Leave it on Other

In the Select how your app integrates with Facebook section, click the checkmark next to App on Facebook. Next enter
https://localhost:8000/canvas/ for the Canvas URL. Leave the secure canvas canvas url blank, as we’ll be running this
site as a development site.

Next, click the Save changes button to create your app! You’ll get a warning saying Secure Canvas URL will be
required. To fix this requirement, we’re going to turn on sandbox mode. Sandbox mode makes the application invisible
to facebook users not explicitly added to the app.

To setup sandbox mode, click on Advanced under Settings in the left navigation, click the Enabled radio for Sandbox
Mode, and click the Save changes button at the bottom of the page.

Seperate your canvas app from the admin

Next, we want to make sure the admin section of our site isn’t availalble from the facebook app. We’re
going to modify the root urls.py in the mysite directory so the polls app is reached from /canvas/ (e.g.
http:localhost:8000/canvas/polls/poll/1/)/ We’re going to change one line from this:

8 Chapter 2. Table of Contents

http://developers.facebook.com/docs/guides/canvas/
http://developers.facebook.com/docs/appsonfacebook/tutorial/
http:localhost:8000/canvas/polls/poll/1/)/

django-facetools Documentation, Release 0.2.0

url(r’^polls/’, include(’polls.urls’)),

To this:

url(r’^canvas/polls/’, include(’polls.urls’)),

Now, let’s run out tests to make sure everything is still working. Close the runserver command if it’s still running and
do the following:

$ python manage.py test polls

Sure enough, all out tests still pass even after changing our url structure. This is because we used the reverse function
in our tests to get each view’s url by name, instead of hardcoding them. That’s how we keep things DRY in Django.

Try out your Facebook app!

Ok, go to your app url. First, bring your server back up:

$ python manage.py runserver

Then open polls via your facebook canvas app in your browser. The url will be something like
https://apps.facebook.com/your-app-namespace/polls/. You should be greeted with a CSRF token error page. This
happens because facebook sends a POST to our app with the signed request you read about earlier in the facebook
docs.

This causes Django to complain because we have the CsrfViewMiddleware installed, which looks for a CSRF token in
any post request to prevent cross-site request forgery attacks. Time to bring out Fandjango.

Installing and configuring Fandjango

Assuming you installed the requirments file, Fandjango should already available in your virtualenv.

Setting up Fandjango is easy. In settings.py:

1. Add fandjango to your INSTALLED_APPS

2. Add fandjango.middleware.FacebookMiddleware to your MIDDLEWARE_CLASSES, before the CSRF middle-
ware. MIDDLEWARE_CLASSES should end up looking like this:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’fandjango.middleware.FacebookMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,

)

3. Add the following settings at the bottom of the file. You can find your values at
https://developers.facebook.com/apps/:

FACEBOOK_APPLICATION_ID = "Your App ID / API Key here"
FACEBOOK_APPLICATION_SECRET_KEY = "Your App Secret here"
FACEBOOK_APPLICATION_NAMESPACE = "your-app-namespace"

4. Finally, run syncdb again to add the Fandjango tables:

2.2. Writing your first Django app...for Facebook! 9

https://apps.facebook.com/your-app-namespace/polls/
https://developers.facebook.com/apps/

django-facetools Documentation, Release 0.2.0

$ python manage.py syncdb

Let’s bring your server back up:

$ python manage.py runserver

And let’s visit your page again. You should see the poll page in all it’s glory. Now visit http://localhost:8000/admin.
Your admin page is also available and seperate from the facebook page.

2.2.5 Using Facetools to fix iframe problems

Ok, so now we have our Django app running as a Facebook canvas app. But there are a few problems that persist.

1. The links for each poll read like http://localhost:8000/canvas/polls/1 instead of
https://apps.facebook.com/facetools-example/polls/1.

2. When you click on a poll it goes to the page, but the browsers address bar doesn’t update.

3. When you vote in the poll you get an error, yet the admin shows the vote is getting counted. This is because the
vote gets handled in our polls.views.vote view, but then fails when the view tries to redirect in an iframe.

We’re going to solve all these problems using Facetools. Do the following:

1. Add ‘facetools’ to your INSTALLED_APPS in the settings.py file.

2. Add the following settings at the bottom of the file. You can find your values at
https://developers.facebook.com/apps/:

existing settings you’ve already entered, and are required by facetools
FACEBOOK_APPLICATION_ID = "Your App ID / API Key here"
FACEBOOK_APPLICATION_SECRET_KEY = "Your App Secret here"

New settings you’re adding now
FACEBOOK_CANVAS_PAGE = "Your canvas page here"
FACEBOOK_CANVAS_URL = "The value from Secure Canvas URL here"

3. Add {% load facetools_tags %} to the top of all three template *.html files.

4. Rename url to facebook_url Add a target of _top to each anchor tag in our templates:

In index.html
{{ poll.question }}

In results.html
Vote again?

5. Change the vote view in polls/views.py so HttpResponseRedirect is now facebook_redirect, and that is imported
from facetools.url. It should look like this:

... other imports ...
from facetools.url import facebook_redirect

def vote(request, poll_id):
p = get_object_or_404(Poll, pk=poll_id)
try:

selected_choice = p.choice_set.get(pk=request.POST[’choice’])
except (KeyError, Choice.DoesNotExist):

Redisplay the poll voting form.
return render_to_response(’polls/detail.html’, {

’poll’: p,

10 Chapter 2. Table of Contents

http://localhost:8000/admin
http://localhost:8000/canvas/polls/1
https://apps.facebook.com/facetools-example/polls/1
https://developers.facebook.com/apps/

django-facetools Documentation, Release 0.2.0

’error_message’: "You didn’t select a choice.",
}, context_instance=RequestContext(request))

else:
selected_choice.votes += 1
selected_choice.save()
return facebook_redirect(reverse(’poll_results’, args=(p.id,)))

Save your changes, do runserver again if it’s not running, and go to the index page again in your browser. Now the url
for each poll points to the the page in facebook. And when you submit your vote in a poll, you’ll get redirected to the
results page.

How did Facetools help?

The facebook_url tags automatically translate any url path that falls in the FACEBOOK_CANVAS_URL and translates
it to it’s facebook equivalent.

The facebook_redirect function applies the same logic, acting as a substitute for HttpResponseRedirect and
django.urlresolvers.reverse. It replaces the redirect resonse object with a regular html result. The html consists of
a redirect via javascript. It’ll look something like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>

<script type="text/javascript">
top.location.href="https://apps.facebook.com/your-app-namespace/polls/1/results/";

</script>
</head>
<body>

</body>
</html>

Check out tests

Once last thing, we should check that our tests still pass. Go back to the mysite directory on the command line and run
your tests:

$ python manage.py test polls

You should get one AssertionError stating 302 != 200. This is where we used to check that POSTing a vote would
result in a http status code for redirects. Since we’re now forced to use javascript to redirect the client, we’re getting a
regular 200 status code instead.

Update the second code block in the vote_and_assert method of the ServerSideTests class in the polls/tests.py file from
this:

Make sure after voting the user is redirected to the results page
expected_redirect_url = reverse("poll_results", args=[poll.pk])
self.assertEquals(302, response.status_code)
self.assertIn(expected_redirect_url, response.content)

to this:

Make sure after voting the user is redirected to the results page
expected_redirect_url = facebook_reverse("poll_results", args=[poll.pk])

2.2. Writing your first Django app...for Facebook! 11

django-facetools Documentation, Release 0.2.0

self.assertEquals(200, response.status_code)
self.assertIn(expected_redirect_url, response.content)

and add the following import to polls/tests.py:

from facetools.url import facebook_reverse

Now when you run the tests again they all should pass.

2.3 Integrating and Testing Facebook Open Graph

2.3.1 Force Facebook users to install app and grant permissions

Now let’s add a feature that actually leverages Facebook’s Open Graph. We’re going to add a welcome message to the
poll index page. To get access to the user’s name, we’ll need Facebook users to install the app and grant permissions
to us.

To do this with Fandjango is easy. We need to add a decorator on each of our view functions. We can also add
permissions our app requires in our settings.py.

First, add this with the other Facebook settings in the settings.py file:

FACEBOOK_APPLICATION_INITIAL_PERMISSIONS = [
’read_stream’,
’user_birthday’,

]

This will make Fandjango ask users their permission to read from their stream and get their birthday (a.k.a. their age).
Next we add the decorator to each view function. Change polls/views.py like so:

... other imports ...
from fandjango.decorators import facebook_authorization_required

@facebook_authorization_required
def vote(request, poll_id):

... the function body ...

And change polls/urls.py to look like this:

... other imports ...
from fandjango.decorators import facebook_authorization_required

urlpatterns = patterns(’’,
url(r’^$’,

facebook_authorization_required(
ListView.as_view(

queryset=Poll.objects.order_by(’-pub_date’)[:5],
context_object_name=’latest_poll_list’,
template_name=’polls/index.html’)

), name=’poll_index’),
url(r’^(?P<pk>\d+)/$’,

facebook_authorization_required(
DetailView.as_view(

model=Poll,
template_name=’polls/detail.html’)

), name=’poll_detail’),
url(r’^(?P<pk>\d+)/results/$’,

12 Chapter 2. Table of Contents

django-facetools Documentation, Release 0.2.0

facebook_authorization_required(
DetailView.as_view(

model=Poll,
template_name=’polls/results.html’)

), name=’poll_results’),
url(r’^(?P<poll_id>\d+)/vote/$’, ’polls.views.vote’, name="poll_vote"),

)

Now each view has the facebook_authorization_required decorator, which will look for a signed request either in
POST data or in the user’s cookies. If it’s missing, it’ll redirect the user to an authorization page to install your app
and grant it the permissions you specify.

Finally, Facetools requires you add facetools.middleware.FandjangoIntegrationMiddleware to MIDDLE-
WARE_CLASSES, which should look this this when you’re done:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’fandjango.middleware.FacebookMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’facetools.middleware.FandjangoIntegrationMiddleware’,

)

2.3.2 Adding Facebook open graph data to a template

Change the template under polls/templates/polls/index.html so it looks like this:

{% load facetools_tags %}

<h1>Hello, {{ request.facebook.user.full_name }}!</h1>

{% if latest_poll_list %}

{% for poll in latest_poll_list %}
{{ poll.question }}
{% endfor %}

{% else %}
<p>No polls are available.</p>
{% endif %}

And we’ll need to add a template context processor so we can access the request object in our templates. Add this to
the bottom of your settings.py file:

TEMPLATE_CONTEXT_PROCESSORS = (
"django.contrib.auth.context_processors.auth",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.media",
"django.core.context_processors.static",
"django.contrib.messages.context_processors.messages",
"django.core.context_processors.request",

)

Now when you go to the index page, you should be greeted by name. Fandjango attaches the facebook object to
every request. Assuming a valid signed request was found, the facebook object will have a two member variables,

2.3. Integrating and Testing Facebook Open Graph 13

django-facetools Documentation, Release 0.2.0

signed_request and user.

The signed_request variable is a dict with the signed request data. The user variable is a Fandjango User instance,
containing useful data, like user.full_name, user.gender, and user.email, along with a property called graph. The graph
property is an instance of Facepy.GraphAPI, which gives you an API for this user’s open graph data.

2.3.3 Testing Facebook open graph data

Facebook provides a mechanism for defining test users for an app without creating fake accounts in facebook. You
can read up about it here: http://developers.facebook.com/docs/test_users/

Facetools provides a means of managing your test users so that they can be created and used automatically in your
tests across one or environments (development vs staging).

We’re going to update our tests to ensure the open graph data is working correctly on our site, with a little help from
Facetools

Setup Facebook Test Users in Facetools

First we’ll deine our facebook test user. Create the file polls/facebook_test_users.py with the following content:

facebook_test_users = [
{

’name’: ’Sam Samson’,
’installed’: True,
’permissions’: [

’read_stream’,
’user_birthday’,

]
}

]

This is how we define test users in Facetools. Each Django app can provide its own set of users in a face-
book_test_users.py file. The file either needs to define a list named facebook_test_users, consisting of dicts following
the above format, or a callable of the same name that also returns a list of those dicts.

What’s nice is that we defined this test user once, and now we can recreate him anywhere with a management com-
mand we’ll see in a bit. This is particularly nice if you have a facebook app for each of your environemnts (e.g.
myfacebookapp-dev, myfacebookapp-staging).

Next, we’ll create the test user on facebook using the sync_facebook_test_users management command. From the
command line in the mysite directory, run:

$ python manage.py sync_facebook_test_users polls

Once this finishes running, you’ll have a test user defined on facebook, and a test fixture with the TestUser data at
polls/fixtures/facetools_test_users.json. This test fixture is created or re-created everytime the command is run, which
is particularly useful for updating the fixture’s access token when they go stale.

Extra - We won’t use this for the tutorial, but you can also define a test users friends among other test users. It works
like this:

facebook_test_users = [
{

’name’: ’Sam Samson’,
’installed’: True,
’permissions’: [

’read_stream’,

14 Chapter 2. Table of Contents

http://developers.facebook.com/docs/test_users/

django-facetools Documentation, Release 0.2.0

’user_birthday’,
]

},
{

’name’: ’Laura Ensminger’,
’installed’: True,
’permissions’: [

’read_stream’,
’user_birthday’,

],
’friends’: [’Sam Samson’]

}
]

If you ran sync_facebook_test_users now, you would get two test users that are friends with each other on Facebook.

Update unit tests to test graph data

We’re going to update our test for index now. Update polls/tests.py so it look like this:

... other imports ...#
from facetools.test import FacebookTestCase

class ServerSideTests(FacebookTestCase):
fixtures = [’polls.json’]
facebook_test_user = "Sam Samson"

def test_index(self):
The view should return a valid page with the correct template
response = self.client.get(reverse("poll_index"))
self.assertEquals(200, response.status_code)
self.assertTemplateUsed(response, "polls/index.html")
self.assertIn(’latest_poll_list’, response.context)

The template should get all the polls in the database
expected_polls = [p.pk for p in response.context[’latest_poll_list’]]
actual_polls = [p.pk for p in Poll.objects.all()]
self.assertEquals(set(expected_polls), se‘t(actual_polls))

The response content should have our teset user’s name
assertIn(self.test_user.name, response.content)

... rest of file ...#

We’ve done a few things here. First, we’ve imported a FacebookTestCase, and then changed the parent class of
ServerSideTests from TestCase to FacebookTestCase. Using this class will make the Django test client mock a request
as if made from the facebook canvas page, giving you access to a signed request of the specified test user, in this case
“Sam Samson”. It’ll also supply us with self.test_user, the TestUser object of “Sam Samson”.

Integrate Fandjango into the tests

Next we’ll need to hook into Facetools’ signals. One is for syncing any of your user data models with the up-to-date
(thanks to sync_facebook_test_users) test user data (in particular their access tokens). THe second is to update the test
client to include the signed request, e.g. via a cookie.

If you are using Fandjango then we can use functions provided by Facetools. Add the following code at the top of
polls/models.py:

2.3. Integrating and Testing Facebook Open Graph 15

django-facetools Documentation, Release 0.2.0

... other imports ...#

from facetools.signals import sync_facebook_test_user, setup_facebook_test_client
from facetools.integrations import fandjango
sync_facebook_test_user.connect(fandjango.sync_facebook_test_user)
setup_facebook_test_client(fandjango.setup_facebook_test_client)

... rest of file ...#

With this, we’ll have a Fandjango User record created for our test user before each test is ran, complete with the proper
acesss token. And we’ll also have a signed request for the test user added to a cookie that Fandjango sets when a user
logins on the real Facebook canvas site.

Now if you go ahead and run the tests again everything should pass.

Manually manage Facebook Test Users in test cases

New in 0.2

Currently, our ServerSideTests test case should look like this:

class ServerSideTests(FacebookTestCase): fixtures = [’polls.json’] facebook_test_user = “Sam Sam-
son”

... rest of test case ...#

In 0.2 you can now manually set the signed request for a FacebookTestCase test client, instead of using a face-
book_test_users.py file, the facebook_test_user attribute, and the sync_facebook_test_users management command.
Instead you can use the new set_client_signed_request method to set the test client’s signed request.

The set_client_signed_request accepts a facebook user ID and an access token. This will cause the
setup_facebook_test_client For example, you could modify the ServerSideTests test case to look like this:

class ServerSideTests(FacebookTestCase):

def setUp(self): facebook_id, oauth_token = your_function_for_getting_a_users_facebook_id_and_oauth_token()
self.set_client_signed_request(facebook_id, oauth_token)

... rest of test case ...#

This way you can manage creation and deletion of test users manually. This also works well if you don’t need to
automatically sync your test fixture data with real and currently active test user facebook ids and access tokens. This
makes sense if your test coverage doesn’t touch any open graph calls, or if you use a library to mock away open graph
calls.

2.3.4 Wrap Up

And that’s how you use Facetools and Fandjango together. Here are the key takeaways:

• Facetools will let you translate URLs for Facebook canvas pages with little effort

• Facetools makes it easy to create and keep Facebook test users in sync across multiple facebook apps (e.g.
apps.facebook.com/myapp-dev, apps.facebook.com/myapp-staging)

• Facetools give you a test client that mocks Facebook’s communication with your canvas app.

• Facetools provides a signal to sync your internal User models with your app’s Facebook test users

• Facetools also provides a signal to view, modify, and use the signed request before each of your tests.

• And finally, Facetools comes with an integration package to work hand-in-hand

16 Chapter 2. Table of Contents

django-facetools Documentation, Release 0.2.0

with Fandjango. Support for more Facebook packages coming soon.

2.3. Integrating and Testing Facebook Open Graph 17

django-facetools Documentation, Release 0.2.0

18 Chapter 2. Table of Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

19

	Introduction
	Table of Contents
	Installing Django Facetools
	Writing your first Django app...for Facebook!
	Integrating and Testing Facebook Open Graph

	Indices and tables

